Scalar Gravitational Theory with Variable Rest Mass

D.T. Froedge

Formerly Auburn University
Phys-dtfroedge@glasgow-ky.com

V072207
@ http://www.arxdtf.org

ABSTRACT
In this paper we will present the mechanical dynamics of a gravitational system resulting from a specific, rest mass, scalar potential relation. The total mass energy will be considered local with the individual mass particles. And only defined relative to a given observer. No energy will be ascribed to the field, thus there is no stress energy tensor. The value of the rest mass is not significantly different from that of a particle defined in a stationary asymptotically flat GR spacetime, when the defining point particles via the Komar mass. This is probably the reason the orbital equations from this conjecture yield results similar to the orbital equations in GR. The significance of this conjecture and paper is that proper orbital mechanics can actually be calculated, without resorting to the GR tensor formulation. Since rest mass goes to zero at the Schwarzschild boundary, the formation of black holes becomes problematic.

@ http://www.arxdtf.org

INTRODUCTION

Our first assumption will be that the total energy of a particle is localized in the volume of the particle, and that there is no energy content in the fields related to the particle. Such localization does not generally contradict Newtonian physics, [8] but is not an acceptable feature GR, or any gauge theory having continuously infinite number of independent infinitesimal generators.[9]. This is not a critique of GR, in that such definitions are not necessary for the calculation of physical effects, which are calculated unambiguously.

The rest mass as we are defining it, has similarity to the Komar mass in that it is dependent on the Gravitational potential. The Komar mass is determined by integrating Einstein’s Equation

\[R_t^t = 8\pi \left(T_t^t - \frac{1}{2} T \right), \]

(1)
over any volume in the 3-space generated with \(t = \text{constant} \) [10]. In some Kerr configurations this integral can become negative, which some researchers consider to be unphysical [11].

In this conjecture, we will take the mass of a particle to be defined only relative to an observer. The total energy being considered to reside locally at the point of a particle, and the total energy of the system being just the simple sum of the particles over a given volume. At the Schwarzschild boundary, the rest mass will be found to become zero, implying total conversion of rest mass to photons. Proportionality of mass with gravitational potential as noted, implies a finite universe with a finite gravitational potential, which can be integrated to yield the total mass of the system, which will be left for another paper.

Observations made in the weak solutions of General Relativity do not appear to be contradicted by the conjectures developed here, and in this range the physical difference may not be measurable.

Some of the current views of photon energy in GR are contrary to Einstein’s Original view that the photon energy is constant and the shift is due slower clock associated with the emission. [12]. Some of the current views of GR are that the photon loses energy to the field on rising. The most common view is that the frequency of a photon is based on the emitting rate of rate of a clock exposed to a gravitational and not a change in the frequency due to rising in the field.

This conjecture preserves a constant time scale, but ascribes the lower frequency to the lower rest mass of the emitter, which yields photons of lesser energy, and lower frequency. This is perhaps a significant difference between this paper and GR. After taking account of the rest mass change at different elevations, the results of the Pound-Rebka-Snider experiment does indicate that the energy of the photon must be conserved. We would conclude from this that, since the energy of a photon rising in a gravitational potential is unaffected, and since by the Shapiro effect, the velocity increases, there is no reason to believe photons could not always escape a gravitational potential.
With the foregoing, and our conjectured caveat that the rest mass decreases in a gravitational potential, the formation of black holes becomes problematic.

We would also conclude that in the interior of a neutron star with levels of the gravitational potential approaching one, the rest mass, and velocity of light approaches zero, and there is total conversion of mass to energy.

The consequences result, for large masses, not in the formation of black holes, but rather a mass to Gamma ray converter. In a massive neutron star total conversion would create an energy engine suitable for driving unstable gamma ray bursters. It could be suggested that the anomalous defined gamma ray sources emissions of the galactic center, imaged by the ESA/INTEGRAL spacecraft could be from bodies close to the maximum mass [3]. The source of the 511 kev annihilation line could also be the result of electrons falling in on objects near the maximum mass rather than electron-positron annihilation. The determination of the value of the maximum stellar mass will be important in determining the validity of this theory.

It should be clarified that Scalar Theory in this case refers to the fact that the instantaneous gravitational potential is a linear sum, defined as:

\[\phi = \sum_{n}^{N} \frac{2\mu_{n}}{r_{n}}, \]

(2)

and not a reference to the potential functions \(\Box^{2} \phi = 4\pi G c^{2} \rho \), and as such the scope of this paper does not include wave motion, or gravitational radiation. Those issues will be left for later consideration.

In an earlier paper we presented the relation between the observable mass and what we have designated as the gravitationally field free mass [1]:

\[M_{F} = M / \alpha \]

(3)

where \(\alpha \) is a scalar variable at a particle in space (\(r = \mu \)), and related to the gravitational interaction by:

\[1 = \sum_{n}^{N} \frac{\alpha_{n} \mu_{n}}{r_{n}}, \]

(4)
This is asserted to be the fundamental relation between the Gravitational Constant and the Fine Structure Constant.

For the value at the locus of a mass particle this is:

\[\alpha = \left(1 - \sum_{n}^{N} \frac{\alpha_n \mu_n}{r_n}\right). \] (5)

We will take Eq.(3) to be the defining relation for the motion of the particles in the system, and presume that the total energy of a particle in a conservative system to be constant.

GENERAL DEVELOPMENT

First noted is that the sum in Eq. (5) is a function defined at all points in the system, and defines the value of the mass for the particles in asymptotically flat spacetimes. Although points may have the same value of alpha, they not necessarily have the same configuration. Expression (3) for the rest mass of a particle is:

\[M_r^2 = \frac{M_{10}^2}{\alpha_1^2} = \frac{M_{20}^2}{\alpha_2^2} \] (6)

where the 1 and 2 subscripts represent the same particle in two positions. And \(M_r \) is the mass independent of the effect of any other particles. The zero in the subscript implies the rest momentum.

If Eq.(6) is true then, since there can be internal motion in a mass of particles, which would not be distinguishable from the rest mass by an external observer, the relativistic masses must have the same proportion. i.e.:

\[\frac{M_{10}^2}{\alpha_1^2} = \frac{M_{20}^2}{\alpha_2^2} \Rightarrow \frac{M_1^2}{\alpha_1^2} = \frac{M_2^2}{\alpha_2^2} \] (7)

Since the rest, and relativistic masses are related by:
\[
\frac{M_{10}^2}{\alpha_1^2} = \frac{M_1^2}{\alpha_1^2} \left[1 - \frac{v_1^2}{c_1^2} \right] \quad \frac{M_{20}^2}{\alpha_2^2} = \frac{M_2^2}{\alpha_2^2} \left[1 - \frac{v_2^2}{c_2^2} \right]
\]

(8)

then \(c \) and \(v \) have to be proportional, or:

\[
\left(\frac{v}{c} \right)_1 = \left(\frac{v}{c} \right)_2
\]

(9)

From Eq. (5), and Eq. (9), the ratio for two configurations for a single rest particle, one in free space (1), and one in propinquity to a local gravitating mass (2), is:

\[
\frac{\alpha_1^2}{\alpha_2^2} = \frac{M_{10}^2}{M_{20}^2} = \frac{\left(1 - \sum \frac{\mu_m}{r_m} \right)^2}{\left(1 - \sum \frac{\mu_m}{r_m} - \alpha_i \frac{\mu_{loc}}{r_{loc}} \right)^2} = \frac{1}{\left(1 - \frac{\mu_{loc}}{r_{loc}} \right)^2},
\]

(10)

where \((\text{loc})\) designates variables of the local gravitating mass. This presents the relationship between the rest mass as a function of the gravitational potential.

Precision and second order terms

Equ. (10), gives a second order relation between the mass and the gravitational potential to be:

\[
M_{10}^2 \left(1 - \frac{\mu_{loc}}{r_{loc}} \right)^2 = M_{10}^2 \left[1 - 2 \frac{\mu_{loc}}{r_{loc}} \left(1 - \frac{1}{2} \frac{\mu_{loc}}{r_{loc}} \right) \right] = M_{20}^2,
\]

(11)

From general conservation of energy we can write a similar relation:

\[
M_{10}^2 \left(M_{10} c^2 + M_{10} c^2 \frac{r_{loc}^2}{r^2} \frac{\mu_{loc}}{r_{loc}} \right) = M_{10}^2 \left(1 - 2 \frac{\mu_{loc}}{r_{loc}} \right) = M_{20}^2
\]

(12)

Though Eq. (11) and (12), are very similar the second order terms are significantly different, and at this point we must decide which form is more
fundamental for defining the second order terms. Up until this point the fundamental form Eq. (5), has not had a need to address the secondary terms, so for the previous work we can consider the terms to be selectable. Equ. (12), on the other hand is a statement of inverse square law of gravitational attraction, and since this paper as well all the previous work uses only Euclidean and Minkowski space we will considered this the proper relation for defining the secondary terms, thus:

\[
\frac{\alpha_2}{\alpha_1} = \left[1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \left(1 + \frac{1}{2} \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \right) \right] \left[1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \right)^{-1/2} \right]^{-2} \quad \frac{\alpha_2^2}{\alpha_1^2} = \left(1 - 2 \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \right) (13)
\]

This could be considered as a modification of the potential propagation radius, necessary for the inverse square law of gravitational attraction, and differing from the GR space curvature modification of \(r \) which is defined by:

\[
\mu \left[\begin{array}{c} 1 \\ \frac{\mu}{r} \\ r \end{array} \right] (14)
\]

Since a moving particle experiences the “relativistic mass” of the gravitating mass \(\mu_{\text{loc}} \), in the event the particle, (2) in Eq. (10) is moving, the mass must be:

\[
M_{\text{loc}} = M_{0\text{loc}} / \sqrt{1 - v_2^2 / c_2^2} \quad . (15)
\]

Then restating Eq.(10), we have:

\[
\frac{M_{10}^2}{M_2^2 - M_2^2 (v/c)^2} = \left(1 - \frac{\mu_{0\text{loc}}}{r_{\text{loc}} \sqrt{1 - v_2^2 / c_2^2}} \right)^{-2} \quad (16)
\]

or:

\[
M_{10}^2 c^2 \left(1 - \frac{\mu_{0\text{loc}}}{r_{\text{loc}} \sqrt{1 - v_2^2 / c_2^2}} \right)^2 = M_2^2 c^2 - M_2^2 v^2 \quad (17)
\]

And since we have:
\[M_2^2 = M_1^2 \frac{\alpha_2^2}{\alpha_1^2} \] \hfill (18)

we can write Eq (17) as:

\[M_0^2 c^2 \left(1 - \frac{\mu_{0,loc}}{r_{loc}} \left(1 + \frac{1}{2} \frac{v^2}{c^2} \right) \right)^2 = M_0^2 c^2 - M_1^2 v^2 \left(1 - \frac{\mu_{0,loc}}{r_{loc}} \right)^2 \] \hfill (19)

Orbital Mechanics

We now have a differential expression relating the initial mass, the total mass, the velocity, and the distance to the local gravitating mass. We should thus be able to solve for the orbital motion, without need to make assumptions about the force mass relation, or the influence of a vector potential on the test particle. We have only assumed the rest mass relation between particles, and the relativistic mass velocity relation.

In the following it will be shown that the equations of motion defined by Eq. (19) produces orbital relations, equivalent to the weak field GR relations, with the same perihelion advance:

Rearranging we have:

\[\frac{(Mc)^2_0 - (Mc)^2_1}{(Mc)^2_0} c^2 - 2 \left(1 + \frac{1}{2} \frac{v^2}{c^2} \right) \frac{\mu_{0,loc} c^2}{r_{loc}} + \frac{M_1^2}{M_0^2} v^2 \left(1 - 2 \frac{\mu_{0,loc}}{r_{loc}} \right) = 0 \] \hfill (20)

Noting in a conservative system the first term in Eq. (20) is constant, that is the total mass, and the initial rest mass are constant, we can rearrange, and write this in the usual form:

\[2 \varepsilon = -2c^2 \frac{\mu_{0,loc}}{r_{loc}} + v^2 \left(1 - 3 \frac{\mu_{0,loc}}{r_{loc}} \right) = 0 \] \hfill (21)

Replacing \(r \) with \(u = 1/r \), and dropping the subscripts we have:

\[2 \varepsilon = -2\mu c^2 + v^2 (1 - 3\mu u) = 0 \] \hfill (22)
The corresponding GR relation is:

\[2 \varepsilon - 2\mu u c^2 + v^2 (1 - 2\mu u) - \left(\frac{dr}{ds} \right)^2 = 0 \] (23)

Rearranging Eq. (22), we have:

\[2 \varepsilon = -c^2 2\mu u + \left(\frac{dr}{dt} \right)^2 (1 - \dot{r}^2 \dot{\theta}) + \dot{u}^2 \left(\frac{r^2}{\dot{r}} \right)^2 (1 - 3\mu u) = 0 \] (24)

using the relations:

\[h - \left(\frac{r^2}{\dot{r}} \right) \left(\frac{dr}{dt} \right)^2 - \dot{h}^2 \left(\frac{du}{d\theta} \right)^2 \] , (25)

\[\frac{d}{d\theta} \left(u^2 h^2 - 3\mu u^3 \right) = 2uh^2 \frac{du}{d\theta} - 9\mu h^2 u^2 \frac{du}{d\theta} \]

and noting that:

\[\frac{d}{d\theta} \left[\left(\frac{dr}{dt} \right)^2 (1 - 3\mu u) \right] = 2h^2 \left(\frac{du}{d\theta} \right) \left(\frac{d^2 u}{d\theta^2} \right) (1 - 3\mu u) - 3\mu \left(\frac{dr}{dt} \right)^2 \left(\frac{du}{d\theta} \right) \] (26)

The differential with respect to \(\theta \), is:

\[\left[-2\mu c^2 \frac{du}{d\theta} + 2h^2 \frac{du}{d\theta} \frac{d^2 u}{d\theta^2} (1 - 3\mu u) - 3\mu h^2 \left(\frac{du}{d\theta} \right) \left(\frac{du}{d\theta} \right)^2 + 2h^2 u \frac{du}{d\theta} - 9\mu h^2 u^2 \frac{du}{d\theta} \right] = 0 \] , (27)

Factoring \(2h^2 \frac{du}{d\theta} \) we have:

\[-\frac{c^2 \mu}{h^2} + \frac{d^2 u}{d\theta^2} (1 - 3\mu u) - \frac{9}{2} \mu u^2 + u - \frac{3}{2} \left(\frac{du}{d\theta} \right)^2 \mu = 0 \] , (28)

or:
\[\frac{d^2 u}{d \theta^2} + u - \frac{u_0}{(1-e^2)} - \frac{2 \mu u^2}{2(1-3\mu u)} - \frac{9\mu u^2}{2} \left(\frac{du}{d\theta} \right)^2 \frac{\mu}{(1-3\mu u)} = 0 \] , (29)

where:

\[\frac{u_0}{1-e^2} = \frac{c^2 \mu}{h^2} \] , (30)

and \(e \) is the eccentricity.

Taking out terms in second order of \(\mu \), then this is:

\[\frac{d^2 u}{d \theta^2} + u - \frac{u_0}{(1-e^2)} - \frac{3 \mu u_0 u + 3\mu u^2 - \frac{9}{2} \mu u^2}{(1-e^2)} \frac{3}{2} \mu \left(\frac{du}{d\theta} \right)^2 = 0 \] . (31)

The orbital equation is then:

\[\frac{d^2 u}{d \theta^2} + u = \frac{u_0}{(1-e^2)} + \left[\frac{3 \mu u^2}{2} + \frac{3}{2} \mu u_0 \left(\frac{2u}{1-e^2} + e^2 \frac{u_0}{(1-e^2)^2} \sin^2 \theta \right) \right] \] , (32)

which is not exactly the Einstein orbital equation, but does have the same perihelion advance.

The perihelion advance factor, by the procedure of Robertson Noonan [4] is:

\[\sigma = \frac{1}{2} \frac{d}{du} \left[\frac{3 \mu u^2}{2} + \frac{3}{2} \mu u_0 \left(\frac{2u}{1-e^2} + e^2 \frac{u_0}{(1-e^2)^2} \sin^2 \theta \right) \right] \bigg|_{u=u(0)} \] , (33)

or

\[\sigma = \left[\frac{3 \mu u + 3 \mu u_0}{2} \left(\frac{1}{1-e^2} + e^2 \frac{u_0}{(1-e^2)^2} \cos \theta \sin \theta \frac{d \theta}{du} \right) \right] \bigg|_{u=u(0)} \] , (34)

or

\[\sigma = \left[\frac{3 \mu u + 3 \mu u_0}{2} \left(1 + e \cos \theta \right) \right] \bigg|_{u=u(0)} = \frac{3\mu}{p} \] , (35)

which compares within experimental error with a more exact value of the Einstein perihelion advance by Powell [5]:
\[
\frac{3\mu}{p} \left[1 + \frac{3\mu (1 + e)}{2e} \right]
\]

\((36) \)

\textit{Orbital Deflection}

For the deflection of a particle traveling near light speed can evaluate the orbital Eq. (31) by setting:

\[
u_0 = \frac{\mu}{R^2} \quad u = \frac{\cos \theta}{R},
\]

\((37) \)

for small \(\mu \) terms: This yields a deflection of:

\[
\frac{5}{2} \mu
\]

\((38) \)

or a total angular deflection of:

\[
5 \frac{\mu}{R}
\]

\((39) \)

Which is greater by 25% that the known angular light deflection of:

\[
4 \frac{\mu}{R}
\]

\((40) \)

The high speed particle deflection and the light deflection developed below, unlike in the prediction of GR are not the same. This is not presumed to be a fatal flaw since, the rules of motion for a particle and a photon in the scalar theory are not the same. As a mass particle enters a gravitational potential from an external observer, its velocity accelerates, whereas the velocity for the photon deaccelerates, (Shapiro effect). At this point there has not been a measurement of high-speed particle deflection, and thus no available comparison. Unless there is an undiscovered component, or calculation error, the difference in the mass particle deflection would provide a testable distinction with GR.

\textit{Photon Energy}

From the defining relation of this theory Eq. (3), the view of the Pound-Rebka-Snider, Mossbauer effect experiment (1960–1965)[6] changes. Instead of the photon losing energy as the photon rises in the tower, the emission of the photon at the bottom of the tower, is from a less massive
generator, and at a lower frequency. The generated frequency plus the added Doppler frequency provided by the velocity of the source in the experiment equals the frequency at the top, thus the photon loses no energy in the flight up the tower.

\[v_B \left(1 - \frac{v}{c} \right) + v_D = v_f. \]

(41)

This could be a departure from General Relativity, or not depending on the various interpretations. The original Einstein view, was that the energy was not changed in transit but the generation was at an altered frequency due to the time shift. Most current views are that there is an energy change in transit and in the case of a black hole the entirety of the energy is lost before escapement. Our view is more consistent with the original Einstein view, however, but the change is due to the lower mass of the generator at the lower position rather than a time dilation, time is constant.

Proper Deflection and Velocity of Light

In order to accommodate the change in the rest mass associated with this theory, (Eq. (10)) there are other consequences, that can be deduced, that happen as the result, the most notable is the change in the velocity of light. The purpose of the following exercise is to determine the change in value of the relative velocity of light inside a gravitational field, as observed by an external observer.

To that end we will make a few assumptions that are consistent the theory.

Assumptions

1) The frequency of an atom, and thus extended to an atomic clock, is proportional to the rest mass. This assumption is equivalent to the potential time dilation of General Relativity, however in this case, the change is the result, not of a change in the time scale, but a change in the rest mass.

2) The physical dimensions of a material object at rest are invariant in a gravitational potential.

In order to determine the speed of light shift in a gravitational potential we will use a thought experiment based on the above assumptions. One can take
the results either way. The results lead to the assumptions, or the assumptions lead to the results.

1) An laser interferometer is set up in an elevator on the top floor of a building, with a standing wave, having an integral number of wavelength across a resonating cavity.
2) The apparatus is lowered to the bottom floor.
3) We will make the assumption that there is no observable difference in the number of standing waves in the resonating cavity. This is also required by the equivalence principle.

Using our assumptions, and Eq. (10) the frequency has decreased as a result of the decreased rest mass of the system at the lower position, and is:

\[\nu = \nu_0 \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \right) \] \hspace{1cm} (42)

If the frequency has declined by the potential factor then the wavelength would extend beyond the interferometer space, if there were not an equivalent reduction of the wavelength by the same factor.

\[\lambda = \lambda_0 \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}} \right) \] \hspace{1cm} (43)

Since the product of \(\nu \lambda \) is the velocity of light, we have for a change in the velocity:

\[c = \lambda_0 \nu_0 \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}}\right) \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}}\right) = c_0 \left(1 - \frac{\mu_{\text{loc}}}{r_{\text{loc}}}\right)^2 \] \hspace{1cm} (44)

We know this is the proper value or relative velocity by way of the measured Shapiro effect. This relative velocity also leads to the proper, deflection of light, in agreement with GR by way of Fermat’s principle, as shown by Blandford et al [7].

\textbf{Momentum Considerations}
Although the energy of a photon rising or falling in a gravitational potential is unaffected the same cannot be true of the momentum. With momentum given by:

\[
P = \frac{E}{c} = \frac{\hbar}{\lambda} = \frac{\hbar}{\lambda_0} \left(1 - \frac{\hbar c^2}{r_{loc}}\right)^{-1}.
\]

Thus from the perspective of this theory, for both the photon, and a massive particle, on entering a gravitational potential, the total energy remains constant, but the momentum increases.

CONCLUSION

With simple assumptions regarding the relation between rest mass and distance, proper gravitational dynamics and phenomena can predicted. The proposed theory yields the proper orbital equations, with the proper perihelion advance, deflection of light and gravitational red shift. The gravitational potential exchanges no energy with photons, thus photons cannot be bound in a gravitational field, and the existence of a black hole as defined in GR, and viewed by Einstein [13], would not be possible.

